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Abstract-The correspondence principle for vibrations of viscoelastic bodies is specialized to the case of
small loss tangents, resulting in considerable simplification: Analytical evaluation of oscillatory fields is
greatly simplified; peak frequencies and peak amplitudes under forced vibrations can be simply and directly
determined; numerical solution of viscoelastic vibration problems becomes no more complicated than that of
elastic problems. Similar simplifications result for computation of real and imaginary parts of effective
complex moduli of composite materials,

INTRODUCTION

The problem of the steady state vibrations of viscoelastic bodies can be conveniently treated in
terms of a well-known correspondence principle. The principle states essentially that the solution
to a viscoelastic vibration problem is obtained from the solution of a geometrically similar elastic
vibration problem, by replacement of elastic moduli by corresponding complex moduli (see e.g.
[I]).

The actual evaluation of viscoelastic solutions often requires cumbersome separation of
complicated functions of complex moduli into real and imaginary parts. It is the purpose of the
present work to establish a much simplified method of analysis which is valid for the case when
the loss tangents of the viscoelastic material are small compared to unity. The method which will
be developed is not only of great analytical simplicity but also considerably facilitates numerical
analysis of viscoelastic vibration problems.

Practically speaking, loss tangents of viscoelastic materials rarely exceed the value 0.1. It
appears that the method which will here be given is still very accurate for such loss tangent
magnitude.

The idea of the small loss tangent approximation has been used before. The resulting
simplifications for some particular cases have been discussed in [I]. Hashin[2-4] has utilized a
small loss tangent approximation to evaluate convenient expressions for the real and imaginary
parts of effective complex moduli of viscoelastic composites.

In the present work the small loss tangent approximation is developed in systematic fashion to
evaluate internal fields in vibrating viscoelastic bodies as well as peak ("resonance") frequencies
and amplitudes for the case of forced vibrations. Some of the results given here have been
reported in [5]. Recently, Schapery[6] has also treated the forced vibration case based on small
loss tangent approximation from a different point of view.

For the purpose of subsequent development, it is necessary to briefly recapitulate the classical
vibrations correspondence principle. Let the viscoelastic body be bounded by the surface S. The
viscoelastic properties of the body are characterized in the general anisotropic case by the
complex moduli.

(1.1)

where latin subscripts range over 1, 2, 3, w is the frequency, L = Y- 1, prime denotes real part and
double prime denotes imaginary part.

Suppose the body is subjected to the boundary conditions

Ui(S, t) = u~(S) e"'" on Su

T,(S, t) = f~(S) e"'" on ST
(1.2)

tSupported by the Air Force Office of Scientific Research (AFOSR), under Grant 74-2591, through the European Office of
Aerospace Research (EOAR), United States Air Force.
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where Ui are displacements and Ti are tractions. The fields of displacement and stress in the
body then have the forms

The stress-strain relation is

Ui(~, t) = Ui(~) e"'"

(TijC~, t) = cTii(~)e""t.

(103)

(1.4)

In the absence of body forces the space dependent parts Ui of the displacements satisfy the
differential equations

where p is the density.
From (1.2) and (1.3) there follow the boundary conditions

(1.5)

Ui(S) = u~

7;(S) = cTij(S)nj = f~

on Su
(1.6)

If an elastic body of identical shape with moduli Cikl is subjected to (1.2) the elastic problem is
mathematically identical, with complex moduli replaced by Clkl. Let the elastic solution be
written

(1.7)

where r is a compact notation for the elastic moduli Cikl. It follows that in the viscoelastic case

U;(~) = eUi(~, C)
cTii(~) = ecTii(~' t)

(1.8)

where t is a compact notation for tilk/.

Equations (1.8) concisely express the correspondence principle for vibrations of viscoelastic
bodies: Once the elastic solution is known, it is merely necessary to replace in it elastic moduli by
complex moduli to obtain the space dependent parts of viscoelastic solution.

A similar correspondence principle has been shown to apply [2, 3], for effective complex
moduli of viscoelastic composites. Consider first a composite which consists of k purely elastic
phases. Let the effective elastic moduli C~ikl of the composite be written

(1.9)

where ro!, r m , ... denote the elastic moduli of the phases and {g} denotes the internal phase
geometry. Now consider a composite of entirely identical phase geometry whose phases are
viscoelastic. Then the effective complex moduli Ctkl are given by

(1.10)

where Co!, Cm , ... denote the phases complex moduli.
If the composite consists of elastic and viscoelastic phases then the elastic phase moduli are

left unchanged in the replacement formula (1.10).
Numerous applications of (1.10) have been given in [3,4].
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2. THE CASE OF SMALL LOSS TANGENTS

Consider any complex modulus (1.1). The loss tangent is defined as

C!/kltan Bi/kl = -,- (no sum on right side).
C i /kl
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(2.1)

For most viscoelastic materials which can still be classified as linear the loss tangent is a small
number, which only rarely reaches the value 0.1. Consideration of smallness of loss tangent leads
to considerable simplification which will now be explained.

Consider a function f(x +Ly) in the domain

0::;:; y::;:; Yo Yo~x. (2.2)

Let it be assumed that at points (x, 0) the function is analytic and can therefore be expanded in a
Taylor series. Within the domain (2.2) the function may be approximated by the first two terms of
the Taylor series

f(x + LY) == f(x) + LYf'(X). (2.3)

Similarly a function of several complex variables f(xt + LY" X2 + LY2, . .. , Xm+ LYm) in the domain

(2.4)

can be approximated by

(2.5)

The relations obtained will first be applied to the viscoelastic solution (1.8). For simplicity
consider an isotropic material with complex bulk and shear modulus given by

and define the loss tangents by

K(LW) = K'(w) +LK"(w)

G(LW) =G'(w) + LG"(W)

K"
tanBK =-~ I

K'

(2.6)

(2.7)

Interpreting (2.6) as complex variables XI +LYI, X2 + LY2 in (2.5) it follows that (1.8) can be
decomposed into real and imaginary parts in following fashion

U: == 'Ui[!, K'(w), G'(w)]

u;/ = 'Ui/(,~, K'(w), G'(w)]

u'! == K"(w) :~,+G"(w) :~:,

-II. =K"( ) au:/ +G"( ) au:/
(I'l - w aK' waG"

(2.8)

(2.9)

(2.10)
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It is seen that the real parts of the viscoelastic solution are merely the elastic solution in which
elastic moduli are replaced by (frequency dependent) real parts of complex moduli. The
imaginary part of the viscoelastic solution is expressed in terms of products of imaginary parts of
the complex moduli multiplied by partial derivatives of real parts of the solution with respect to
real parts of complex moduli.

In view of (2.7), (2.10) can also be written in the form

"II , au: ,au:
U i = tan SK K aK' + tan SaG aG'

(2.11)

The results (2.8)-(2.11) can be generalized in obvious fashion to cases where the solution
depends on any number of complex moduli. Pertinent examples for dependence on more than
two complex moduli are anisotropic and/or heterogeneous bodies.

Some interesting implications of the results obtained will now be discussed. It is well known
that in general the frequency dependence of the imaginary part of a complex modulus is much
stronger than that of the real part. It is consequently seen that the real parts (2.9) are weakly
frequency dependent while that of the imaginary parts (2.10) is roughly expressed by a linear
combination of K"(w) and G"(w). In particular, K"(w) can be neglected with respect to G"(w) for
most isotropic materials. In that case there result the proportionality relations

""=G"( )au~u,- waG'
(2.12)

"".=G"( )aa-:j

a'J - waG"

The most important implications of the results are probably for numerical analysis of
viscoelastic vibrations. Suppose that a computer program for numerical analysis of an elastic
vibration problem is available. Such a problem can be directly utilized to compute (2.9). Now to
compute (2.10) the partial derivatives must be determined numerically. This can be done in terms
of the approximation

au: _ 1 ["'( K' G' "G') "'( K' G')]aG' = ~G' u i ~, , +u. - U i ~, , (2.13)

and similarly for the other partials. Thus it is merely necessary to evaluate differences between
neighboring elastic solutions.

Special treatment is needed for the case of resonance. When an elastic system is subjected to
forcing inputs at frequency equal to a critical frequency of the system, the displacement becomes
infinite. If the system is viscoelastic there are no infinities. Instead the displacements assume
finite peaks, which can be very large at certain peak frequencies.

To consider such cases let the forced vibration solution for the displacement of an elastic
system be written in the form

'( t)_N(~,w,M) ~,
u~, - D(w,M) e (2.14)

where M denotes dependence on one or several elastic moduli. In general Nand D are also
functions of the dimensions of the elastic system.

The elastic resonance condition is given by

D(w,M)=O.

The frequency solutions of (2.15) define the critical frequencies 'wn •

(2.15)
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If the same system is viscoelastic then by the correspondence principle

U(!, t) = u(!) e....'

u(x) = N(!, w, [1)
- D(w,M)

At = M'(w)+ tM"(w)
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(2.16)

where M is the complex modulus corresponding to M.
Assuming small loss tangents and analyticity of the functions Nand D in the domain

O:sM":sMo

it follows by previous development that

Mo~M' (2.17)

_ N'+tN"
U = D'+tD"

where

N' == N[!, w, M'(w)] (a)

D' == D[w, M'(w)] (b)

Nil == M" ;~: (c)

D" =Mil aD' (d)
- aM' .

The absolute value 1141 of 14 is given by

(2.18)

(2.19)

(2.20)

and since the imaginary parts are small compared to the real parts it may be shown that (2.20)
assumes a maximum when

D' = D[w, M'(w)] = O. (2.21)

Equation (2.21) defines the peak frequencies W n• Since M' is frequency dependent, the peak
frequencies W n will be shifted with respect to elastic critical frequencies Wn • The amount of
shifting increases with the rate of change of M' as a function of w.

At peak frequencies wn , (2.18) assumes the form

(2.22)

where the subscripts n denote values at Wn• Neglecting N~2 with respect to N~Z, (2.22) can be
written as

_ N~ _,oj<

Un = D~ e n

N~
tan o/n = N~'

The time dependent peak displacement Un is then given by

(2.23)

(2.24)
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It is seen that the peak amplitudes are given by

A
• N~

mp u. = D~ (2.25)

and the phase shift of output with respect to input is given by - "'" which for large enough ratio
N ~/N~ can be approximated by - (7T/2).

The above given development defines a simple procedure for evaluation of peak frequencies
and amplitudes for the case of small loss tangents. The pertinent equations are (2.21) and (2.25).

It should be noted that the development is the same for the case of dependence on several
moduli. If in the elastic case there enter the moduli MI, M2, ••• Mk and the corresponding
complex moduli are M1(tw), M2(tw) ... MdtW), then (2.19) is replaced by

and (2.21) is replaced by

N' == N[~, w, Maw), MHw), M~(w)]

D' ==D[w, Maw), MHw), M~(w)]

NI/==~ aN:M~
e~1 aM e

DI/==f aD' M~
e~1 aM~

D'[w, Maw), M~(w), ... M~(w)] = o.

(2.26)

(2.27)

Everything else remains the same.
The present procedure for determination of peak frequencies and amplitudes is not directly

applicable to numerical analysis. Determination of peak frequencies requires numerical solution
of (2.21) and determination of peak amplitudes requires numerical evaluation of (2.25). This,
however, is not possible since by numerical analysis only the ratio N/D of (2.14) (the space
dependent part of the elastic oscillating field) is known and not the functions Nand D
themselves.

This difficulty can be overcome in the following fashion: Define the reciprocal of the elastic
amplitude by

D(w,M)
1/(~, w, M) = N(~, w, M)'

In the viscoelastic case replace M by M'(w). Thus

'( M') D[w, M'(w)]
1/ ~,w, = N[x, w, M'(w»)'

(2.28)

(2.29)

The quantity 1/' can be found numerically by numerical solution of an elastic vibration problem in
which M'(w) is used instead of the elastic modulus. The frequency equation (2.21) is fulfilled
when (2.29) vanishes. Thus the peak frequencies w. are determined by

1/' = o. (2.30)

It should be noted that (2.30) vanishes for all ~.

For the purpose of evaluation of (2.25), (2.29) is differentiated with respect to M'. Then

aD' aN'
a' aM' aM,D'
~-----aM'- N' N,2' (2.31)



Vibration analysis of viscoelastic bodies with small loss tangents 555

The last term on the right side of (2.31) vanishes at Wn in view of (2.29-30). Then by use of (2.19d),
and (2.25) it follows that

A
~ I

mp Un == a ' at W == wn'

--2LM"
aM'

To evaluate (2.32) numerically, write:

where

(2.32)

(2.33)

and 11M' is an arbitrary small increment of M' at wn•

The small loss tangent approximation is readily applicable to viscoelastic composites. It is
merely necessary to interpret (1.9) as the function! and the phase complex moduli as the complex
variables XI + ty., Xz + tyz, ... in (2.5).

Let M* be any effective complex modulus of a composite and eM* the corresponding
effective elastic modulus of the associated elastic composite. Write

M* == M*'(w) + IM*"(w),

Let M* be dependent on the phase complex moduli M 1, M2 , • •• which are written

Mt==M;+tM'!

M2==M~+ tM~.

Then

(2.34)

(2.35)

or defining

M*' == eM*(M;, M~, ...) (a)
(2.36)

(2.36b) assumes the form

M'!
tan[j.= M;~I,

M~
tan [jz == M ~ ~ 1. ...

M*"- [j M,aM*' [j M,8M*'
=tan 1 1 aM; +tan 2 z aM~ +, . '.

Results of type (2.36)-(2.37) have already been given and exploited in [2-4].

(2.37)

3. APPLICATION: TORSIONAL VIBRATIONS

As a simple example for the preceding theory consider torsional vibrations of a cylindrical rod
which is built in at one edge and is subjected to a sinusoidal forcing torque at its other edge.

If the rod is elastic then the elementary one-dimensional version of the problem is given by

(3.1)
zGlc==-

pi



556

where
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c/J(o, t) = 0

M(I, t) = Gfac/J I = Mo e,wt
ax F'

built in edge

loaded edge
(3.2)

c/J = angle of twist
p = density
1 = polar moment of inertia
f = Saint Venant torsion coefficient.

The solution to this problem is given by

"'( ) Moe sin (wxle) ~t." x t = e, wGf cos (wi/c)

The critical frequencies are defined by

cos (ewni/c) = 0

e (2n - 1)11' I
W n = 2 C

If the rod is viscoelastic with complex modulus

O(LW) = G'(w)+ LG"(W)

then by the correspondence principle

-1..( ) _ Moe sin (wxle) ~r." x, t --.- e
wGf cos (wi/e)

-2 01
c = pJ"

(3.3)

(3.4)

(3.5)

(3.6)

Separation of (3.6) into real and imaginary parts is a tedious undertaking, resulting in complicated
functions. These have then to be plotted as functions of w in order to identify peak frequencies
and peak amplitudes.

Considerable simplification is achieved by application of the theory of small loss tangents. For
frequencies not close to peak frequencies, it follows from (1J), (2.9-10) and (3.3) that

c/J(X, t) = (c/J' + tc/J")e~r

c/J' = Moc' sin (wxlc')
wG"f cos (wi/c/)

where

c/J" = G" :~: (b).

For simplicity (3.8b) is evaluated at x = I only. Thus

-1.."(1) Mo [ (II /) wi/c'] ~ ,wI." ,t = - 2wpJc' tan w c + cos2 (wi/c/) tan u e .

(3.7)

(3.8)

(3.9)
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For evaluation of peak frequencies and peak amplitudes (2.14) is compared with (3.5). This
provides the identification

N = Moe sin (wxle) (a)

D = wGJ cos (wile)

M=G

(b)

(c).

(3.10)

It follows from (2.21) and (J.10) that the peak frequencies W n are defined by

cos (wile') = 0

where e' is given by (3.8a). The solutions of (3.11) are given by

2 (2n -1)17" G'(wn )

Wn = 2 ----,;to

It is convenient to write G'(w) in the form

G'(w) = Gof(wlwo)

where Wo is some reference frequency and

Go = G'(wo).

(3.11)

(3.12)

(3.13)

(3.14)

It is customary to represent f as a function of log (wlwo) for convenience of plotting.
If the cylinder were elastic with shear modulus Go its resonant frequencies would be given by

• 2_(~ )2 Go
wn - 217" pl'

Consequently, (3.12) can be written in the form

(3.15)

(3.16)

Equation (3.16) is easily solved by iteration, starting out with the value wn(\) = 'wn •

Next, the amplitude peaks of the angle of twist 4J are evaluated at the tip x = l. It follows from
(2.19a, b) and (3.10) that

N~ = Moe' sin (wnlle') (a)

D~ = wnG'J cos (wnlle') (b).
(3.17)

where e' is given by (3.8a). Now D~ is evaluated by use of (2.19d) and (3.17b). Then from (2.25)
and (3.11) there results the simple expression

where

2Mo
Amp 4Jn(1) = pJ/ 2 t ~

Wn an Un

G"(w.)
tan 5. = G'(w.)

(3.18)

(3.19)

and W n are the peak frequencies defined by (3.12) or (3.16).
A similar calculation for l/J., the phase lag between input and peak output, as defined by (2.23),

yields

USS Vol. 13 No. 6-E

2
tanl/J. =-t~'an On

(3.20)
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In order to appreciate the simplicity of the results obtained, the form of the angle of twist
obtained without the small loss tangent approximation will be given. It follows from (3.6) after
lengthy calculation that

Am c/J (I) = Moc y'(sin
2

2a + sinh
2

2(3)
p" w"IGIJ cos2a+cosh2{3

l/I" = -tan-I (Si~h 2(3) _ ~
sm2a 2

where

IGI = G'(w")y'[l + tan2 0)

w"1 /2ex =-coso
c

(3 = w"1 sin 0/2
c

w" = frequency at maxima of (3.20).

To assess the accuracy of the small loss tangent approximation peak frequencies and peak
amplitudes have been computed for a circular cylinder with the following data:

I = 60" length
d = 4.0" diameter
p = 3.0 density relative to water

G'(w) = GoO + ~ 10glO w) real part of shear modulus
Go = 2 X 106 psi

tan 0 = 0.1 frequency independent loss tangentt
Mo = 1000 lb. in.

The frequency eqn (3.12) assumes the form

2 1T Go( I )
WI = 2Pl I +410glO WI

2 31T Go (1 )
W2 = T PI I + 4 log10 W2 etc.

Equations (3.21) are easily solved by iteration yielding the peak frequencies

WI = 3020.4 rad/sec.

W2 = 9353.7 rad/sec.

The peak amplitudes as given by (3.18) and by (3.20) are compared below

small loss tangent
exact approximation

(3.21)

5.17226 X 10-3

0.54811 X 10-3

5.173% X 10-3

0.53949 X 10-3

tStrictly speaking, tan fi must be also frequency dependent. The present assumption is merely for simplicity of calculation.
All of previous developments are valid for frequency dependent loss tangent.
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The phase lags at peak frequencies are close to -90° for the present case of tan lJ = 0.1.
Usually, the loss tangent is smaller and consequently l/In is even closer to -90°.

4. CONCLUSION

A simplified method has been given to analyse forced vibrations of viscoelastic bodies and
structures for the case of small loss tangents. Of particular importance is the simplified evaluation
of peak frequencies and peak amplitudes.

The method can be conveniently used for numerical analysis of viscoelastic vibrating
systems. In this case evaluation of real part of solution is simply a numerical elastic analysis in
terms of real parts of complex moduli. Numerical evaluation of imaginary part of solution
requires numerical evaluation of derivative of real part with respect to real part of complex
modulus. In this respect it should be noted that numerical analysis of a vibrating viscoelastic
system can also be directly carried O\lt in terms of the classical version of the correspondence
principle by use of a computer program with complex moduli. Choice of procedure to be adopted
in numerical analysis of a specific problem will depend upon the circumstances.

A sample calculation has been carried out for the case of tan lJ = 0.1 resulting in high accuracy
for peak frequencies and amplitudes. Since loss tangents encountered in practice are usually
smaller than 0.1, it is concluded that the method is very accurate for practical applications.
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